Калужские рефераты


Дипломы, курсовые по матметодам математическим методам в экономике

Скачать реферат:

Название: Операции с ценными бумагами

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15     16    17  

где i* - ожидаемый уровень доходности (норма дисконтирования).
Для решения подобных уравнений существуют компьютерные про­граммы и специальные калькуляторы.
Для индивидуального инвестора владение акциями может быть нео­пределенно долгим, и тогда модель оценки соответствующей акции ана­логична модели бессрочной облигации. В этом случае ожидаемый до­ход, т.е. поток наличности, целиком состоял бы из будущих дивидендов и уровень дохода определялся бы путем решения следующего уравнения относительно:
?
P0=? Дt /(1+i)t
t=1
Существует, однако, большая неопределенность получения дивиден­дов по акциям, чем процентов по облигациям, и предсказывать их слож­нее, чем выплаты процентов по облигации, что делает оценку обыкно­венной акции более сложной, чем облигации.
Уравнение представляет общую модель оценки акции в том смысле, что величина ожидаемых дивидендов в момент t может изменяться лю­бым образом в зависимости от экономического положения компании-эмитента, при этом уравнение будет действительно. В соответствии с ожидаемой динамикой дивидендов базовая модель оценки акций мо­жет изменяться. Возможны следующие случаи изменения ожидаемых значений дивидендов:
1) величина дивидендов не меняется со временем (модель дисконти­рования дивидендов при нулевом росте);
2) величина дивидендов возрастает с постоянным темпом. Если темп роста обозначить как g, то дивиденды, получаемые в момент t, можно представить как Дt = Дt-1 (1 + g) или Дt = Д0 (1 + g)t. Тогда текущая сто­имость акции (дисконтированное значение потока ожидаемых поступ­лений дивидендов) будет:
? ?
PV=?Д0 (1+g)t / (1+i)t = Д0 ?(1+g)t / (1+i)t
t=1 t=1
Если i > g (в противном случае в результате получится отрицатель­ное значение стоимости акции, что бессмысленно) и g - постоянная ве­личина, то
?
P0=?(1+g)t / (1+i)t =(1+g) / (i -g) или PV=Д0 [(1+g) /( i-g)]
t=1
Отсюда PV= Д1 /(i-g), так как Д1 = Д0 (1 + g).
Если ожидается, что дивиденды компании будут расти постоянны­ми темпами, то величина ожидаемого дохода, определяемая из условия равенства текущей стоимости будущих поступлений по акции и ее теку­щей цены приобретения, может быть рассчитана следующим образом:

P0 = Д0 [(1+g) /(i*-g)]= Д1 /( i*-g)
Откуда
i*=Д1 /P0 +g
Предположим, что в течение последнего года компания "Мир" вып­лачивала дивиденды из расчета 10 руб. на акцию. Прогнозируется, что выплаты дивидендов возрастут на 5% в год на неопределенное время в будущем. Приемлемая норма доходности для инвесторов составляет 11%, а рыночная цена акции "Мир" равна 250 руб. Текущая стоимость одной акции "Мир" составляет:
PV=10,0*(1+0,05)/(0,11-0,05)=10,5/0,06=175руб.
Сравнив ее с рыночной ценой Р0
NPV = PV- Р0 = 175 - 250 = -75 руб.,
видим, что с позиций инвестора, оценившего акцию в 175 руб.,. акции компании "Мир" переоценены рынком, и инвесторы будут стремиться их продать, если владеют ими в настоящее время. Норма ожидаемой доходности такой акции
i*=0,04+0,05=9%
Итак, приемлемая для инвестора норма доходности превосходит ожидаемую (11 %> 9%);
3) оценка акций с изменяющимся темпом роста дивидендов. Эта модель оценки акций отражает наиболее общий случай определения их текущей стоимости и ожидаемого дохода инвесторов, вкладывающих средства в приобретение таких акций.

  1    2    3    4    5    6    7    8    9    10    11    12    13    14    15     16    17  

Скачан: 21 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама