Калужские рефераты


Дипломы, курсовые по матметодам математическим методам в экономике

Скачать реферат:

Название: Операции с ценными бумагами

  1    2    3    4    5    6    7    8    9    10    11    12     13    14    15    16    17  

Пример. Пусть инвестору необходимо определить текущую стоимость облигации номиналом 1,0 тыс. руб., ставкой купонного дохода 30% сроком обращения 10 лет, которая бы обеспечила ему получение 35% годового дохода (на уровне рыночной нормы доходности).
Подставляя эти величины в формулу текущей стоимости облигации, j получим:
10
PV=1,0*0,3?1/(1+0,35)t +1,0 / (1+0.35)10 =0,3 • 2,715 + 1,0 • 0,05 = 0,8145 +
t=1
+0,0497 = 0,8642 тыс. руб.
Значения дисконтирующих множителей приведены в финансовых таблицах.
В данном случае текущая цена облигации равна 0,8642 тыс. руб., что меньше ее номинала, и облигация продается с дисконтом, что то же са­мое. Некий совокупный инвестор готов приобрести данную облигацию только по цене ниже номинала.
Допустим, что рыночная норма доходности по данной облигации составляет 25% годовых (при прочих равных условиях). Тогда ее теку­щая рыночная цена
10
PV=1,0*0,3?1/(1+0,25)t+1,0/ (1+0.25)10=
t=1
= 0,3-3,57 +1,0- 0,01 = 1,071 + 0,1= 1,171 тыс. руб.
В данном случае текущая себестоимость облигации превышает ее номинал, и она может быть приобретена инвестором с премией.
Таким образом, можно отметить, что чем больше ожидаемый уро­вень дохода по облигации с позиции инвестора, т.е. рыночная норма доходности превышает установленную процентную ставку купонного дохода, тем ниже рыночная цена облигации, и наоборот. При равен­стве ожидаемого уровня дохода купонной ставки рыночная цена обли­гации близка к номиналу.
В случае облигации с нулевым купонным доходом, т. е. без выплаты процентов в период обращения, инвестор может определить ее теку­щую стоимость:
PV=N/(1+i)T
где N - номинал облигации, руб.;
Т - период ее обращения, лет;
i - ожидаемая инвестором норма доходности, %.
Текущая стоимость облигации представляет здесь величину номи­нала, которую получит владелец при погашении облигации эмитентом и которая приведена к настоящему (текущему) моменту по ставке дис­контирования, равной ожидаемой норме доходности. При этом ожида­емая инвестором норма доходности определяется на уровне не ниже до­ходности альтернативных вложений. Эта формула представляет упрощенный случай основной модели оценки облигаций.
Пример. Пусть инвестору необходимо определить текущую сто­имость облигации номиналом 1,0 тыс. руб. и сроком обращения пять лет при условии, что ожидаемая норма доходности составит 20% годо­вых. Подставляя значения в формулу текущей стоимости облигации, получим:
PV=1,0/(1+0,2)5=1,0/2,49= 0,402 тыс. руб.
Стоимость, равная 402 тыс. руб., представляет максимальную цену, которую инвестор захочет заплатить, или минимальную цену, по кото­рой он захочет продать, если он ожидает от инвестиций данного типа доходность в размере 20%. Такую облигацию следует купить только при цене существенно ниже номинала (с дисконтом). Допустим, что рыночная цена такой облигации составляет 0,35 тыс. руб. Тогда доход­ность данной облигации при условии, что инвестор приобрел ее по рыночной цене Р, будет определяться:
P=N/(1+i)T => i=0,23(23%)
Расчет показывает, что приобретение такой облигации - выгодное вложение капитала, поскольку норма дохода, обеспечиваемая ею (23%), больше альтернативной (20%).
Зная текущую рыночную стоимость облигации, ее номинал, купон­ную ставку дохода и срок До погашения, можно определить и внутрен­нюю норму доходности, т.е. значение доходности, меньше которого владение облигацией будет убыточно.

  1    2    3    4    5    6    7    8    9    10    11    12     13    14    15    16    17  

Скачан: 21 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама