Калужские рефераты


Дипломы, курсовые по матметодам математическим методам в экономике

Скачать реферат:

Название: Построение экономической модели с использованием симплекс-метода

  1    2    3    4    5     6    7    8    9    10    11    12    13    14    15  

переменной, а любая неэкстремальная точка , лежащая на границе ,
всегда имеет лишь одну нулевую переменную .
Свойство однозначности экстремальных точек позволяет опре-
делить их алгебраическим методом. Будем считать , что линейная
модель стандартной формы содержит т уравнений и п ( т <= п ) не-
известных ( правые части ограничений — неотрицательные ) . Тогда
все допустимые экстремальные точки определяются как все одно-
значные неотрицательные решения системы m уравнений , в ко-
торых п — m переменных равны нулю.
Однозначные решения такой системы уравнений, получаемые
путем приравнивания к нулю ( п — т ) переменных , называются
базисными решениями . Если базисное решение удовлетворяет
требованию неотрицательности правых частей , оно называется
допустимым базисным решением. Переменные , имеющие нулевое
значение , называются небазисными переменными , остальные —
базисными переменными.
Из вышеизложенного следует , что при реализации симплекс-
метода алгебраическое определение базисных решений соответст-
вует идентификации экстремальных точек , осуществляемой при
геометрическом представлении пространства решений . Таким об-
разом , максимальное число итераций при использовании симплекс-
метода равно максимальному числу базисных решений задачи ЛП ,
представленной в стандартной форме . Это означает , что количество
итерационных процедур симплекс-метода не превышает
Cпт= n! / [ ( n - m )!m! ]
Вторая из ранее отмеченных закономерностей оказывается
весьма полезной для построения вычислительных процедур симп-
лекс-метода , при реализации которого осуществляется последова-
тельный переход от одной экстремальной точки к другой, смежной с ней . Так как смежные экстремальные точки отличаются только
одной переменной, можно определить каждую последующую ( смеж-
ную) экстремальную точку путем замены одной из текущих не-
базисных ( нулевых ) переменных текущей базисной переменной.
В нашем случае получено решение , соответствующее точке А , откуда следует осуществить переход в точку В . Для этого нужно увеличивать небазисную переменную X2 от исходного нулевого значения до значе-
ния , соответствующего точке В ( см. рис. 1 ). В точке B переменная
S1 ( которая в точке А была базисной ) автоматически обращается в
нуль и , следовательно , становится небазисной переменной . Таким
образом , между множеством небазисных и множеством базисных
переменных происходит взаимообмен переменными X2 и S1 . Этот
процесс можно наглядно представить в виде следующей таблицы.
Экстремальная точка Нулевые переменные Ненулевые переменные А S2 , X2 S1 , X1 В S1 , X2 S2 , X1
Применяя аналогичную процедуру ко всем экстремальным точкам
рис. 1 , можно убедиться в том , что любую последующую экстре-
мальную точку всегда можно определить путем взаимной замены
по одной переменной в составе базисных и небазисных переменных
( предыдущей смежной точки ) . Этот фактор существенно упрощает
реализацию вычислительных процедур симплекс-метода.
Рассмотренный процесс взаимной замены переменных приводит
к необходимости введения двух новых терминов . Включаемой пе-

  1    2    3    4    5     6    7    8    9    10    11    12    13    14    15  

Скачан: 12 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама