Калужские рефераты


Дипломы, курсовые по матметодам математическим методам в экономике

Скачать реферат:

Название: Построение экономической модели с использованием симплекс-метода

  1    2    3    4     5    6    7    8    9    10    11    12    13    14    15  

Общую идею симплекс-метода можно проиллюстрировать на примере модели , посроенной для нашей задачи . Пространство решений этой задачи представим на рис. 1 . Исходной точкой алгоритма является начало координат ( точка А на рис. 1 ) . Решение , соответствующее этой точке , обычно называют начальным решением . От исходной точки осуществляется переход к некоторой смежной угловой точке .
Выбор каждой последующей экстремальной точки при использовании симплекс-метода определяется следующими двумя правилами .
1. Каждая последующая угловая точка должна быть смежной с предыдущей . Этот переход осуществляется по границам ( ребрам ) пространства решений .
2. Обратный переход к предшествующей экстремальной точке не может производиться .
Таким образом , отыскание оптимального решения начинается с некоторой допустимой угловой точки , и все переходы осуществляются только к смежным точкам , причем перед новым переходом каждая из полученных точек проверяется на оптимальность .
Определим пространство решений и угловые точки агебраически . Требуемые соотнощшения устанавливаются из указанного в таблице соответствия геометрических и алгебраических определений .

Геометрическое определение Алгебраическое определение ( симплекс метод ) Пространство решений Ограничения модели стандартной формы Угловые точки Базисное решение задачи в стандартной форме
Представление пространства решений стандартной задачи линейного программирования .

Линейная модель , построенная для нашей задачи и приведенная к стандартной форме , имеет следующий вид :
Максимизировать
Z = X1 + 25X2 + 0S1 + 0S2

При ограничениях
5X1 + 100X2 + S1 = 1000
- X1 + 2X2 + S2 = 0
X1=>0 , X2=>0 , S1=>0 , S2=>0
Каждую точку пространства решений данной задачи , представленную на рис.1 , можно определить с помощью переменных X1 , X2 , S1 и S2 , фигурирующими в модели стандартной формы. При S1 = 0 и S2 = 0 ограничения модели эквивалентны равенствам , которые представляются соответствующими ребрами пространства решений . Увеличение переменных S1 и S2 будет соответствовать смещению допустимых точек с границ пространства решений в его внутреннюю область. Переменные X1 , X2 , S1 и S2 , ассоциированные с экстремальными точками А , В , и С можно упорядочить , исходя из того , какое значение ( нулевое или ненулевое ) имеет данная переменная в экстремальной точке .

Экстремальная точка Нулевые переменные Ненулевые переменные А S2 , X2 S1 , X1 В S1 , X2 S2 , X1 С S1 , S2 X1 , X2
Анализируя таблицу , легко заметить две закономерности:
1. Стандартная модель содержит два уравнения и четыре
неизвестных , поэтому в каждой из экстремальных точек две ( = 4 - 2 ) переменные должны иметь нулевые значения .
2. Смежные экстремальные точки отличаются только одной пе-
ременной в каждой группе ( нулевых и ненулевых переменных ) ,
Первая закономерность свидетельствует о возможности опре-
деления экстремальных точек алгебраическим способом путем при-
равнивания нулю такого количества переменных , которое равно
разности между количеством неизвестных и числом уравнений .
В этом состоит сущность свойства однозначности экстремальных
точек . На рис. 1 каждой неэкстремальной точке соответствует
не более одной нулевой переменной . Так , любая точка внутренней
области пространства решений вообще не имеет ни одной нулевой

  1    2    3    4     5    6    7    8    9    10    11    12    13    14    15  

Скачан: 12 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама