Калужские рефераты


Дипломы, курсовые по матметодам математическим методам в экономике

Скачать реферат:

Название: Построение экономической модели с использованием симплекс-метода

  1    2    3    4    5    6    7    8    9    10    11    12    13    14     15  

неоптимальным . Наша цель заключается в том , чтобы найти интер-
валы значений изменений коэффициентов целевой функции ( рас-
сматривая каждый из коэффициентов отдельно ) , при которых оп-
тимальные значения переменных остаются неизменными .
Чтобы показать, как выполняются соответствующие вычисле-
ния , положим , что удельный объем сбыта , ассоциированной с переменной
X1 изменяется от 1 до 1 + ???где ?? может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:
Z = ( 1 + ????X1 + 25X2
Если воспользоваться данными начальной симплекс-таблицы и
выполнить все вычисления , необходимые для ( получения заключн-
тельной симплекс-таблицы , то последнее Z-уравнение будет выгля-
деть следующим образом:

Базисные переменные X1 X2 S1 S2 Решение Z 0 0 27/110+1/55?? 5/22-50/55?? 2455/11+1000/55??
Коэффициенты при базисных переменных X1 , X2 и остаточных я равными нулю . Это уравнение отличается от Z-уравнения до введения??? , только наличием членов , содержащих ???. Коэффициенты при ?? равны кoэффициентам при соответствующих переменных в Z-уравнении симплекс-таблицы для полученного ранее оптимального решения
Базисные переменные X1 X2 S1 S2 Решение X1 1 0 1/55 -50/55 1000/55

Мы рассматриваем X1 - уравнение , так как коэффициент именно при
этон переменной в выражении для целевои функции изменился
на??? .
Оптимальные значения переменных будут оставаться неизмен-
ными при значениях ???, удовлетворяющих условию неотрицатель-
ности ( задача на отыскание максимума ) всех коэффициентов при не-
базисных переменных в Z-уравнении . Таким образом , должны выполняться следующие неравенства :
27/110 + 1/55???????
5/22 - 50/55???????
Из первого неравенства получаем , что ?? => - 13,5 , а из второго следует что ?? <= 1/4 . Эти результаты определяют пределы изменения коэффициента C1 в виде следующего соотношения : - 13,5 <= ?? <= 1/4 . Та-
ким образом , при уменьшении коэффициента целевой функции при
переменной X1 до значения , равного 1 + ( - 13,5 ) = - 12,5 или при его увеличении до 1 + 13,5 = 14,5 оптимальные значения переменных остаются
неизменными . Однако оптимальное значение Z будет изменяться ( в соответствии с выражением 2455/11 + 1000/55???, где - 13,5 <= ?? <= 1/4
X2 изменяется от 25 до 25 + ???где ?? может быть как положительным , так и отрицательным числом . Целевая функция в этом случае принимает следующий вид:
Z = ( 25 + ????X2 + X1
Все предыдущее обсуждение касалось исследования изменения коэффициента при переменной , которой поставлено в соответствие ограничение , фигурирующее в симплекс-таблице . Однако такое ограничение имеется лишь в том случае , когда данная переменная является базисной ( например X1 и X2 ) . Если переменная небазисная , то в столбце , содержащем базисные переменные , она не будет представлена .
Любое изменение коэффициента целевой функции при небазисной переменной приводит лишь к тому , что в заключительной симплкс-таблице изменяется только этот коэффициент . Рассмотрим в качестве иллюстрации случай , когда коэффициент при переменной S1 ( первой остаточной переменной ) изменяется от 0 до ?????Выполнение преобразований , необходимых для получения заключительной симплекс таблицы , приводит к следующему результирующему Z-уравнению :

  1    2    3    4    5    6    7    8    9    10    11    12    13    14     15  

Скачан: 12 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама