Калужские рефераты


шпоргалки по математике, шпоргалки по информатике, шпоргалки по физике, шпоргалки по экономике

Скачать реферат:

Название: Шпоры

  1     2    3    4    5    6    7    8    9    10    11    12  

Случайные события и их виды, понятие вероятности.
Случайным естественно называть такое событие, которое при заданном комплексе условий может, как произойти так и не произойти. Мера возможности осуществления такого события и есть его вероятность. Достоверное и невозможное события могут рассматриваться как крайние частные случаи случайных событий. Достоверным называют событие, которое обязательно произойдет при осуществлении определенного комплекса условий. Так, например, вода при нормальных атмосферных условиях и 0 замерзает. Невозможным является событие, которое при заданном комплексе условий никогда не произойдет. Таким образом, вероятность - это шансы осуществления любого составного события, состоящего из нескольких элементарных.
Классическая формула подсчета вероятностей. Комбинаторика.
В общем случае, когда имеется n равновозможных элементарных событий w1,…,wn, вероятность любого составного события А, состоящего из m элементарных событий wi1,…,wim, определяется как отношение числа элементарных событий, благоприятствующих событию А, к общему числу элементарных событий, т.е. P(A)=m/n.
Понятие геометрической и статистической вероятностей.
Пусть отрезок l составляет часть отрезка L. На отрезок L наудачу поставлена точка. Если предположить, что вероятность попадания точки на отрезок l пропорциональна длине этого отрезка и не зависит от его расположения относительно отрезка L, то вероятность попадания точки на отрезок l определяется равенством: P=Длина l/Длина L. Пусть плоская фигура g составляет часть плоской фигуры G. На фигуру G наудачу брошена точка. Если предположить, что вероятность попадания брошенной точки на фигуру g пропорциональна площади этой фигуры и не зависит ни от ее расположения относительно G, ни от формы g, то вероятность попадания точки в фигуру g определяется равенством: P=площадь g/площадь G. Аналогично определяется вероятность попадания точки в пространственную фигуру v, которая составляет часть фигуры V: P=Объем v/Объем V.
Пространство элементарных событий, операции над событиями.
При общем определении вероятности используется пространство элементарных событий, при этом элементарные события являются неопределяемым понятием, но относительно них предполагается, что в результате испытаний обязательно происходит одно из этих элементарных событий. Элементарные события попарно не совместны и образуют группу событий. События, не являющиеся элементарными, отождествляются с теми элементарными событиями, которые благоприятствуют ему, следовательно, случайные события можно рассматривать как подмножество в пространстве элементарных событий, поэтому операции над случайными событиями: объединение (сложение), пересечение (умножение), эквивалентность, отрицание - полностью совпадают с соответствующими операциями над множествами. Операции объединения и пересечения множеств симметричны, т.е.
AB = BA AB = BA
Аксиоматическое определение вероятности.
Вероятностью называется числовая функция, определенная на поле событий S и обладающая следующими свойствами: Аксиома 1. Для любого события A прин. S Р(А)>=0. Аксиома 2. Вероятность достоверного события равна единице Р (омега)=1. Аксиома 3. Вероятность объединения двух несовместных событий равна сумме вероятностей этих событий: А прин. S, В прин. S, А*В=0, Р(А+В)=Р(А)+Р(В). Док-во: Событие А является подмножеством омега, так как А={wi1,…,wim},то, согласно конечной схеме, Р(А)=сумме по l от 1 до m рil, 0<=pil<=1, l=1,…,m, поэтому Р(А)>=0, т.е. условие аксиомы 1 выполняется. Условие аксиомы 2 выполняется, поскольку омега={w1,…,wn}и на основании того, что Р(А)=сумме по l от 1 до m рil, то Р(омега)=сумма по i от 1 до n pi=1. Условие аксиомы 3 также выполняется, так как оно представляет собой содержание теоремы сложения для конечной схемы. Итак, конечная схема является примером объекта, для которого выполняется система аксиом теории вероятностей.

  1     2    3    4    5    6    7    8    9    10    11    12  

Скачан: 0 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама