Калужские рефераты


шпоргалки по математике, шпоргалки по информатике, шпоргалки по физике, шпоргалки по экономике

Скачать реферат:

Название: Способ доказательства теоремы Ферма в общем виде с помощью методов элементарной математики

  1     2    3  

Способ доказательства теоремы Ферма в общем виде
с помощью методов элементарной математики
Ученые-математики вот уже 400 лет безуспешно бьются над доказательством теоремы Ферма. Они категорически отрицают доказательство теоремы элементарными способами. Столь длительные попытки доказательства, повидимому связаны с отсутствием регулярной работы над темой и малой ее актуальной значимостью. Ведь нашли же российские ученые при крайней нужде, в срочном порядке, методы защиты отечественных кораблей от магнитных мин противника. Некоторые ученые считали доказательство теоремы даже неразрешимой задачей. Тем не менее, наконец в 1995 году обнародовано доказательство теоремы Ферма английским ученым А.Уайлсом. Оно базируется на последние достижения математической науки и является по существу результатом коллективного труда определенного круга математиков, работающих в различных направлениях математических исследований.
А.Уайлс в своем доказательстве исходит из того, что теорема Ферма вписывается, является следствием гипотезы Таниямы о модулярных эллиптических образованиях. Такое заключение сделано на основании ограниченного количества точек x,y,z из теоремы Ферма, которые позволяют утверждать автору, что эти точки характиризуют все сочетания x,y,z и n в качестве причастных к модулярным эллиптическим кривым. Доказательство А. Уайлса – сложное и трудоемкое, т.к. потребовалось доказать справедливость самой теоремы Таниямы и причастность элементов теоремы к модулярным эллиптическим кривым. При этом становится неясным: то ли доказывается справедливость гипотезы Таниямы с помощью недоказанной теоремы Ферма, то ли доказывается теорема Ферма с помощью недоказанной гипотезы Таниямы. Доказательство любой теоремы должно базироваться на общепризнанных постулатах. Доказательство А. Уайлса занимает 150 страниц печатного текста и изложено специальным математическим языком, мало доступным большинству интересующихся. Но главный его недостаток – оно не является прямым и непосредственным. Вызывает сомнение отсутствие взаимосвязи показателей степеней n>2 со степенями n=1 и 2 , не показана распространенность условий теоремы Ферма по плоскости XOY и в частности на целые отрицательные числа. Я не берусь подвергать сомнению подобное доказательство, но считаю необходимым утверждать, что любые три точки xn ,yn ,zn могут вписываться в степенные числовые ряды, в треугольники Пифагора или, как будет показано ниже, станут исходными при доказательстве теоремы элементарными методами. Это свидетельствует о том, что доказательство теоремы Ферма с помощью модулярных элептических кривых не является единственно возможным и приемлемым в общем виде. Могут появиться и другие доказательства, в том числе и с использованием элементарной математики.
После опубликования доказательства А.Уайлса в математических журналах в интернете появляются новые доказательства любителей математики, что свидетельствует о их неугасающем интересе к теме и стремлении к поиску более простого и доступного к пониманию непосредственного доказательства теоремы Ферма. Этот процесс в большинстве своем не преследует каких-либо корыстных целей, а скорее всего носит бескорыстный спортивный или престижный характер.
Вопреки мнению ученых математиков, ниже предлагается к обсуждению официальным лицам из института им. В.А. Стеклова и любителям математики из Интернета компактный, практически на 2-х страницах способ элементарного доказательства теоремы Ферма в общем виде, основанный на разложении уравнений Ферма по биному Ньютона на его составляющие. Это позволяет после преобразования уравнений Ферма
xn +yn =zn (1)
к виду
(x - a)n + xn - (x+b)n = 0 (2) где x, a и n – целые числа, а b - целое или нецелое число, в зависимости от соотношения x, a и n; одновременно:
- упростить доказательство, сведя его к одному неизвестному;
- Выяснить взаимосвязь b с параметрами x, a и n;
- определить структурную формулу для x в поисках целых решений при всех показателях степеней n; - выявить причину образования нецелых z при n>2;
- показать, что на плоскости XOY уравнения Ферма имеют нецелые решения для z при n>2, как для положительных, так и для отрицательных чисел x и y , за исключением квадрантов II и IV при нечетных n, где теорема Ферма не имеет смысла.
Итак, приступим к разложению уравнений (2) по биному Ньютона относительно основополагающего параметра x:
(x–a)n + xn = 2xn - nxn-1 a + cn2 xn-2 a2 - cn3 xn-3 a3...... +an
-(x+b)n = xn +nxn-1 b + cn2 xn-2 b2 + cn3 xn-3 b3.......+bn
Д= xn - nxn-1 (a+b) + cn2 xn-2 (a2-b2) - cn3 xn-3 (a3+b3)…+(an+bn) =0 (3)
Мы получили основное уравнение (3) для поиска целых решений z
Упростим уравнение (3), приняв в нем а=b=1,2,3…. При этом доказательство теоремы сводится к решению задачи с одним неизвестным х (обоснование принятия а=b=1,2,3… см. ниже). В этом случае выражение (3) после решения его относительно х примет вид:

  1     2    3  

Скачан: 0 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама