Калужские рефераты


шпоргалки по математике, шпоргалки по информатике, шпоргалки по физике, шпоргалки по экономике

Скачать реферат:

Название: Геометрия чисел

  1     2    3    4    5    6  

Министерство Образования Российской Федерации
ГОСУДАРСТВЕННОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Хабаровский Государственный Педагогический Университет
Кафедра математического анализа и информатики
Курсовая работа
“Геометрия чисел”

Выполнил: =PeppeR=
Научный руководитель: доцент кафедры
мат. анализа и информатики
кандидат физ.-мат. наук

Хабаровск – 2004
Содержание.
1. Введение. 2
2. Постановка задачи. 3
3. Основная задача геометрии чисел. 4
4. Теорема Минковского. 6
5. Доказательство теоремы Минковского. 7
6. Решётки. 10
7. Критические решётки. 13
8. «Неоднородная задача». 17
9. Список литературы. 18
Введение.
Возникновением теории чисел мы, по большому счёту, обязаны Минковскому. Минковский (Minkowski), Герман - выдающийся математик (1864 - 1909), еврей, родом из России. Был профессором в Бонне, Кенигсберге, Цюрихе и Геттингене. Сблизил теорию чисел с геометрией, создав особое учение о "геометрии чисел" ("Geometrie der Zahlen", 1896 - 1910; "Diophantische Approzimationen", 1907, и др.). Последняя его работа: "Raum und Zeit" (Лейпциг.,1909; несколько русских переводов); здесь дана смелая математическая формулировка так называемого "принципа относительности". Полное собрание сочинение Минковского вышло в Лейпциге, в 1911 г.; биография Минковского в русском издании "Пространство и время". Таким образом, Минковский сделал большой вклад в развитие математики как науки. В частности, он сумел упростить теорию единиц полей алгебраических чисел, а также упростил и развил теорию аппроксимации иррациональных чисел рациональными, или теорию диофантовых приближений. Под диофантовыми приближениями в данном случае понимается раздел теории чисел, изучающий приближения действительных чисел рациональными и вопросы, связанные с решением в целых числах линейных и нелинейных неравенств с действительными коэффициентами. Это новое направление, которое Минковский назвал „геометрией чисел", развилось в независимый раздел теории чисел, имеющий много приложений в самых различных вопросах и вместе с тем достаточно интересный для самостоятельного изучения.
Постановка задачи.
Для начала я хочу рассмотреть некоторые понятия и результаты, играющие в дальнейшем основную роль. Рассуждения, которыми мы здесь пользуемся, иногда значительно отличаются от рассуждений в основных книгах по данному вопросу, так как в данной работе мы имеем целью, не давая полных доказательств, сделать для простейших случаев геометрическую ситуацию интуитивно ясной, тогда как позднее мы будем вынуждены жертвовать наглядностью ради точности. В работе рассматривается основная задача геометрии чисел, приводится теорема Минковского с её доказательством, и объясняются такие понятия геометрии чисел как решётки и критические решётки. В конце работы приводится так называемая «неоднородная задача» геометрии чисел.
Основная задача геометрии чисел.
Основной и типичной задачей геометрии чисел является сле­дующая задача.
Пусть f(х1,…,xn) — функция вещественных аргументов, прини­мающая вещественные значения. Как мал может быть пf(u1,…,un)п при подходящем выборе целых чисел u1,…,un? Может встретиться тривиальный случай f(0,…,0)=0, например, если f(х1,…,xn) является однородной формой; в этом случае совокупность значений u1 = u2 = ... = un = 0 из рассмотрения исключается (“однородная проблема”).

  1     2    3    4    5    6  

Скачан: 0 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама