Калужские рефераты


Дипломы, курсовые по экономической теорим, макроэкономике, политэкономии

Скачать реферат:

Название: Дисперсійний аналіз та побудова статистичних графіків

  1     2    3    4    5  

Дисперсійний аналіз та побудова статистичних графіків
Дисперсійний аналіз
Характеристики варіації
В одних сукупностях індивідуальні значення ознаки щільно групуються навколо центра розподілу, в інших — значно відхиляються. Чим менші відхилення, тим однорідніша сукупність, а отже, тим більш надійні й типові характеристики центра розподілу, передусім середня величина. Вимірювання ступеня коливання ознаки, її варіації — невід'ємна складова аналізу закономірностей розподілу. Міри варіації широко використовуються у практичній діяльності: для оцінювання диференціації домашніх господарств за рівнем доходу, фінансового ризику інвестування, ритмічності роботи підприємств, сталості врожайності сільськогосподарських культур тощо.
На основі характеристик варіації оцінюється інтенсивність структурних зрушень, щільність взаємозв'язків соціально-економічних явищ, точність результатів вибіркового обстеження.
Для вимірювання та оцінювання варіації використовуються абсолютні та відносні характеристики. До абсолютних належать: варіаційний розмах, середнє лінійне та середнє квадратичне відхилення, дисперсії; відносні характеристики подаються низкою коефіцієнтів варіації, локалізації, концентрації.
Узагальнюючою характеристикою варіації є середнє відхилення:
а) лінійне
, б) квадратичне, або стандартне
; в) дисперсія (середній квадрат відхилень)
. Види та взаємозв'язок дисперсій
Дисперсія посідає особливе місце у статистичному аналізі соціально-економічних явищ. На відміну від інших характеристик варіації завдяки своїм математичним властивостям вона є невіддільним і важливим елементом інших статистичних методів, зокрема дисперсійного аналізу.
Для ознак метричної шкали дисперсія — це середній квадра відхилень індивідуальних значень ознаки від середньої:
. Як і будь-яка середня, дисперсія має певні математичні властивості. Сформулюємо найважливіші з них.
1. Якщо всі значення варіант xj зменшити на сталу величину А, то дисперсія не зміниться:
. 2. Якщо всі значення варіант xj змінити в А раз, то дисперсія зміниться в А2 раз:
. 3. Якщо частоти замінити частками, дисперсія не зміниться. Нескладними алгебраїчними перетвореннями можна довести,
що дисперсія — це різниця квадратів . Якщо
, то, замінивши і поділивши всі складові на п, дістанемо:
, де – квадрат середньої величини; – середній квадрат значень ознаки.
Дисперсія альтернативної ознаки обчислюється як добуток часток: , де d1 — частка елементів сукупності, яким властива ознака, d0 — частка решти елементів . Застосуємо основну формулу дисперсії до цих характеристик структури:
. Якщо, скажімо, у збиральному цеху частка висококваліфікованих робітників становить d1= 0,2, то дисперсія частки
у2=0,2 (1-0,2)=0,16.
Дисперсія альтернативної ознаки широко використовується при проектуванні вибіркових обстежень, обробці даних соціологічних опитувань, статистичному контролі якості продукції тощо. За відсутності первинних даних про розподіл сукупності припускають, що d1=d0=0,5 і використовують максимальне значення
дисперсії у2 =0,5·0,5=0,25.
Якщо сукупність розбито на групи за певною ознакою х, то для будь-якої іншої ознаки у можна обчислити дисперсію як у цілому по сукупності, так і в кожній групі. Центром розподілу сукупності в цілому є загальна середня , центром розподілу в j-й групі — групова середня . Відхилення індивідуальних значень ознаки у від загальної середньої можна подати як дві складові: . Узагальнюючими характеристиками цих відхилень є дисперсії: загальна, групова та міжгрупова.

  1     2    3    4    5  

Скачан: 0 раз.

Скачать диплом, курсовую, реферат, контрольную

Понравилось? тогда жми кнопку!

Лучшие студенческие анекдоты

Поиск


Реклама